Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 13(2): 63, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36718410

RESUMO

Nanobiotechnology has been an encouraging approach to improving the efficacy of hydrophobic bioactive compounds. The biologically active constituents present in herbal extracts are poorly absorbed, resulting in loss of bioavailability and efficacy. Hence, herbal medicine and nanotechnology are combined to overcome these limitations. The surface-to-volume ratio of nanoparticles is high and as the size is small, the functional properties are enhanced. The present study reports the synthesis of cinnamon and cumin (Ci-Cu) dual drug-loaded poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) to overcome the limitations of oral bioavailability and extend the effect of these drugs for alleviating health problems. The solvent evaporation method was adopted for the synthesis, and the as-prepared nanoparticles were characterized by Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The average size of the formed spherical Ci-Cu nanoparticles ranged between 90 and 120 nm. The encapsulation efficiency of the drug was found to be 79% ± 4.5%. XRD analysis demonstrated that cinnamon and cumin were amorphously scattered in the PLGA matrix. The FTIR bands showed no evident changes suggesting the no direct molecular interactions between the drug and the polymer. At pH 6.9, the release studies in vitro exhibited a burst initially followed by a tendency to obtain a slower steady release. The results indicated that the Cu-Ci dual drug-loaded polymeric NPs has drug release at a slower rate. The time taken for 25% release of drug in Ci-Cu-loaded PLGA NPs was twice as compared to cumin-loaded PLGA Nps, and three times compared to cinnamon-loaded PLGA NPs.

2.
J Mech Behav Biomed Mater ; 138: 105582, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459704

RESUMO

Ankle-foot orthotics need ideal specification of being light-weight, high strength, tough, stiff, and durable. Reinforced polypropylene (PP) composites with enhanced mechanical properties are the most favorable materials being used in this field, but still, it is challenging to achieve balanced blend of strength and toughness in the composites. The present study thus aims to achieve the challenging task of simultaneous improvement in stiffness and toughness in reinforced PP composites exploring the synergistic reinforcement effect of glass fibers (GFs) and nano silica (SiO2) as multiscale fillers and ethylene propylene diene monomer (EPDM) as impact modifier. EPDM is used as toughness modifier, addressing the brittle behavior, but at the cost of the strength of the polymer. Combined use of micro and nanofillers as reinforcement in toughened polypropylene provides a potential approach to balance the strength while maintaining the toughness. GFs could offer high strength and nanofillers offer ductile fracture to the material. PP, PP/GF, PP/EPDM/GF composites and PP/EPDM/GF/SiO2 nanocomposites are fabricated through melt blending technique and are characterized through SEM, mechanical evaluation, nanoindentation and dynamic mechanical analysis. Mechanical properties are evaluated in accordance with ASTM standards. PP/EPDM/GF/SiO2 nanocomposites exhibits remarkable enhancement in Tensile strength, tensile modulus, impact strength and percent elongation at break by 49 MPa (55% increase over PP), 2450 MPa (145% increase), 145 J/m (13% increase) and 156% (160% increase) respectively. The exceptional improvement in reduced modulus and hardness reveals good interfacial properties. Loss factor decrement reveals elastic behavior of nanocomposites suitable for thermoforming of nanocomposites for orthotic device fabrication.


Assuntos
Nanocompostos , Dióxido de Silício , Polipropilenos , Teste de Materiais , Etilenos
3.
Int J Biol Macromol ; 223(Pt A): 1506-1520, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36368362

RESUMO

Due to the potential adverse effects of conventional dental cements, the demand for biocompatible cements have grown tremendously in the field of dentistry. In this respect, Glass ionomer cements (GICs) are being developed by different researchers. However, low mechanical strength of GIC make them unsuitable for application in high-stress areas. Thus, numerous initiatives to improve mechanical performance have been attempted till date including incorporation of reinforcing fillers. Novelty of the study lies in using carboxymethyl chitosan (CMC) to develop a biocompatible dental cement (DC/CMC-m-GP), which would have enhanced mechanical strength due to greater interaction of CMC with the particles of GIC and better cyto-compatibility due to its cell-proliferation activity. The mechanical strength, acid erosion and fluoride release of DC/CMC-m-GP were studied and compared with control dental cement (DC/Control). DC/CMC-m-GP shows compressive strength of 157.45 M Pa and flexural strength of 18.76 M Pa which was higher as compared to DC/Control. The morphology of the GICs were studied through FESEM. Anti-microbial activity of DC/CMC-m-GP was studied by Agar disc-diffusion method and biofilm assay against S. mutans, which shows that DC/CMC-m-GP inhibits bacterial adhesion on its surface. MTT assay infers that DC/CMC-m-GP was non-cytotoxic and did not affect the cell viability significantly.


Assuntos
Quitosana , Cimentos de Ionômeros de Vidro , Cimentos de Ionômeros de Vidro/farmacologia , Quitosana/farmacologia , Teste de Materiais , Força Compressiva , Fluoretos
4.
Int J Biol Macromol ; 182: 37-50, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33775765

RESUMO

In the present work, highly porous, pH-responsive, and biocompatible chitosan-based hydrogel beads were prepared through gamma-irradiated graft copolymerization technique using L-glutamic acid as the monomer. The glutamic acid grafted chitosan (CH-g-GA) hydrogel beads, loaded with the anti-cancer drug (Doxorubicin, Dox), were exploited for their potential application as anti-cancer drug delivery system. The grafting conditions were optimized by varying irradiation dose (kGy) and monomer concentration. Further, the hydrogel beads were analysed using FTIR, XRD, SEM, TGA/DSC, Zeta potential studies, BET analysis and their strength was determined using rheological analysis. The swelling characteristics of the beads were studied at various simulated body pH (2.1, 5.8, and 7.4) to study their pH-responsive behaviour. The in-vitro drug release from the beads was thus evaluated at pH 5.8, 7.4 using UV-visible spectroscopy. The highest swelling ratio (426%) and drug release (81.33% in 144 h) was observed at the pH of 5.8. The MTT assay was performed on HEK-293 cell-line to check their cytocompatibilty and the cell proliferation of Dox-loaded beads was studied on MCF-7 cell-line. A significant cytotoxicity against the cancer-cells was observed which further established their promising use in the controlled delivery of anti-cancer agents for localized cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Quitosana/química , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Hidrogéis/química , Materiais Inteligentes/química , Raios gama , Ácido Glutâmico/química , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Porosidade , Materiais Inteligentes/efeitos da radiação
5.
ACS Omega ; 5(34): 21610-21622, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905438

RESUMO

The objective of this work was to evaluate grafted soy protein isolate (SPI) for pharmaceutical applications. The present work reports the microwave-assisted preparation of soy protein isolate\grafted[acrylic acid-co-4-(4-hydroxyphenyl)butanoic acid] [SPI-g-(AA-co-HPBA)] hydrogel via graft copolymerization using N,N-methylene-bis-acrylamide and potassium persulphate as the cross-linker and initiator, respectively. The chemical and physical properties of the synthesized polymeric hydrogels were analyzed by Fourier transform infrared spectroscopy, liquid chromatography-mass spectrometry (LCMS), nuclear magnetic resonance 1H-NMR, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The SEM, TEM, and XRD analyses have confirmed the formation of hydrogel SPI-g-(AA-co-HPBA) with the network structure having a layered and crystalline surface. The SPI-g-(AA-co-HPBA) hydrogel was investigated for the sustained and controlled drug delivery system for the release of model drug ciprofloxacin at basic pH for its utilization against bacterial infection in oral cavity. The drug release profile for SPI-g-(AA-co-HPBA) hydrogels was studied using LCMS at the ppb level at pH = 7.4. The synthesized hydrogel was found to be noncytotoxic, polycrystalline in nature with a network structure having good porosity, increased thermal stability, and pH-responsive behavior. The hydrogel has potential to be used as the vehicle for controlled drug delivery in oral cavity bacterial infections.

6.
RSC Adv ; 10(25): 14694-14704, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35497171

RESUMO

We report herein the synthesis of a novel photocleavable crosslinker, 4-formylphenyl 4-((4-formylphenoxy)methyl)-3-nitrobenzoate (CHO-ONB-CHO) and its joining with amine-based polysaccharides, viz. chitosan, resulting in the formation of a dual stimuli-responsive (ONB-chitosan) hydrogel having UV- and pH-responsive sites. The detailed mechanism for the formation of CHO-ONB-CHO and ONB-chitosan hydrogel is proposed. The (CHO-ONB-CHO) crosslinker was characterized using 1H-NMR, LCMS and UV-visible spectroscopy. The dual responsive hydrogel is characterized by FTIR, SEM, XRD, DSC and TGA. The crosslinked hydrogel displayed mechanical robustness with a storage modulus of about 1741 pa. The pH-responsiveness of the hydrogel was studied via equilibrium swelling studies in various pH media at 37 °C. The photocleavable behavior of the crosslinker was observed in the UV-absorption range of 310-340 nm and the hydrogel exhibited maximum swelling at pH 5.7. The higher swelling of the hydrogel in acidic conditions and its photo-responsiveness can be exploited for the controlled, temporal and spatial release of therapeutic drugs at any inflammatory areas with acidic environments. It was observed that the hydrogel exhibited higher drug release at pH 5.7 than at pH 7.4.

7.
ACS Omega ; 3(4): 3675-3687, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458616

RESUMO

Polymer nanocomposites (PNCs) have become an exciting field of current research and have attracted a huge interest among both academia and industry during the last few decades. However, the multifunctional single-nanocomposite film exhibiting the combination of desired structure and properties still remains a big challenge. Herein, we report a novel strategy to address these problems by using versatile polymer glycidyl methacrylate (GMA) as a bridging medium between the filler and the polymer matrix, resulting in high density of interfaces as well as strong interactions, which lead to generation of tunable thermal, mechanical, and electrical properties in the materials. The nanocomposites prepared by GMA bridging exhibit the remarkable combination of thermal (T d = 342.2 °C, T g = 150.1 °C ), mechanical (E = 7.6 Gpa and H = 0.45 Gpa ) and electrical (σ = 3.15 × 10-5 S/cm) properties. Hence, the conjugation approaches related to GMA bridging facilitate a new paradigm for producing multifunctional polymer nanocomposites having a unique combination of multifunctional properties, which can be potentially used in next-generation polymer-based advanced functional devices.

8.
Org Biomol Chem ; 14(34): 8154-66, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27511703

RESUMO

ß-Carboline and γ-lactone moieties have been selected by nature as privileged scaffolds and display a wide range of pharmacological properties. Following nature, we envisaged the preparation of new ß-carboline and γ-lactone based molecular hybrids incorporating both the pharmacophores. In this regard, a water-assisted In-mediated environmentally benign and easy to execute single-step tandem Barbier type allylation-lactonisation process has been devised in order to afford the targeted molecular architectures. It is anticipated that aqueous medium plays the key role in allylation as well as in the subsequent lactonisation process for the diastereo-selective synthesis of these conjugates. It is believed that water drives the reaction pathway through dual activation, it increases the electrophilic character of formyl and ester functionalities and simultaneously enhances the nucleophilic potential of the hydroxyl group to facilitate the in situ intramolecular condensation. Importantly, during this synthetic strategy no column chromatographic purification was required at any stage.


Assuntos
Produtos Biológicos/química , Biomimética , Carbolinas/química , Carbolinas/síntese química , Lactonas/química , Lactonas/síntese química , Técnicas de Química Sintética , Água/química
9.
J Phys Chem B ; 120(13): 3403-13, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26982328

RESUMO

Performance of the polymer nanocomposites is dependent to a great extent on efficient and homogeneous dispersion of nanoparticles in polymeric matrices. The dispersion of nanographite platelets (NGPs) in polymer matrix is a great challenge because of the inherent inert nature of the NGPs, poor wettability toward polymer matrices, and easy agglomeration due to van der Waals interactions. In the present study, attempts have been made to use a new approach involving the irradiation of polymer nanocomposites through swift heavy ion (SHI) to homogeneously disperse the NGPs within the polymer matrices. Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) ( PEDOT: PSS)/nanographite nanocomposite (NC) films prepared by the solution blending method were irradiated with SHI (Ni ion beam, 80 MeV) at a fluence range of 1 × 10(10) to 1 × 10(12) ions/cm(2). XRD studies revealed that ion irradiation results in delamination and better dispersion of NGPs in the irradiated nanocomposite films compared to unirradiated films, which is also depicted through SEM, AFM, TEM, and Raman studies. In the irradiated polymer nanocomposite films, the conformation of PEDOT chains changes from coiled to extended coiled structure, which, along with homogeneously dispersed NGPs in irradiated NCs, shows an excellent synergistic effect facilitating charge transport. The remarkable improvement in conductivity from 1.9 × 10(-2) in unirradiated NCs to 0.45 S/cm in irradiated NCs is observed with marked improvement in sensing the response toward nitroaromatic vapors at room temperature. The temperature induced conductivity studies have been carried out for PEDOT: PSS/nanographite NCs to comprehend the charge transport mechanism in NC films using the 3D Mott variable range hopping model also. The study reveals SHI as a novel method, addressing the challenge associated with the dispersion of NGPs within the polymer matrix for their enhanced performance toward various applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...